三角形と円の幾何学[本]
更新
数学オリンピック関連の書籍で私が最も感動した三角形と円の幾何学という本を紹介します。数学オリンピックの幾何の問題を解くための背景知識,エレガントな定理,豊富な問題と解答が載っています。
書籍情報
書籍情報
注意:以下の情報は第1刷に関するものです。現在の版とは微妙に異なる部分があるかもしれません。
題名:三角形と円の幾何学ー数学オリンピック幾何問題完全攻略
著者:安藤哲哉
ボリューム:全212ページ(19章)
- 著者の安藤氏は数学オリンピック辞典(共著)など他にも数学オリンピック関連の書籍を手がけている。
- 他の本では見られない数々の美しい定理と証明が紹介されている。
- 演習問題が非常に豊富で,ロシア数学オリンピック,アジア太平洋数学オリンピック,国際数学オリンピックの過去問など,その数110問以上(全て解答付き)。
- 証明問題のテクニックや例題が多く,数学オリンピック本選突破を目指す人にオススメ(受験数学の参考書ではない)。
- 純粋な初等幾何的なアプローチだけでなく,ベクトルや三角関数の計算によるアプローチもあり。
内容の詳細
内容の詳細
各章のタイトル:
円周角の定理,方巾・根軸・根心,三角法の基礎,三角形の重心と中線定理,三角形の外心と外接円,三角形の垂心とオイラー線,三角形の内心と傍心,5心間の距離と9点円,三角形の射影幾何的諸定理,三角形に関するその他の諸定理,円に内接する四角形とシムソン線,四面体と球,共線・共点・共円問題,共円関係を用いる証明法,軌跡,幾何不等式・最大最小問題,作図問題,相似変換,反転
各章は,数ページの説明ページの後に演習問題が5〜7問程度載っています。
演習書としても素晴らしいのですが,何よりも説明ページが非常に美しいです。説明ページでは,他の参考書ではあまり扱われていない以下のような美しい定理や公式が整理されています。
- 三角関数を用いたブレートシュナイダーの公式など様々な定理の証明。
- オイラーの定理,五心間の距離を用いたフォイエルバッハの定理の証明
- フランクモーリーの定理の初等幾何的な証明
- ナポレオン点,フェルマー点,重心,垂心を統一的に扱い,それらの存在を一挙に示すキーペルト点の話
数学オリンピックの本選突破を目指す人はもちろん,エレガントな証明が好きな大人もどうぞ!