特殊相対性理論における計量テンソル

←前の記事 後の記事→

特殊相対性理論的な空間における計量テンソルの具体的な値を求めることを考えます。

特殊相対性理論における計量テンソル

任意の慣性系 XμX^{\mu} での計量テンソルを求めることを考えます。

計量テンソルの定義から,ある基準となる慣性系 XμX^{\mu'} を用意した時に,任意の慣性系での計量テンソル gμνg_{\mu\nu}gμν=ητσXτXμXσXν g_{\mu\nu} = \eta_{\tau'\sigma'} \dfrac{\partial{X^{\tau'}}}{\partial{X^{\mu}}}\dfrac{\partial{X^{\sigma'}}}{\partial{X^{\nu}}} とかけます。ここで η\eta の定義により, gμν=(ct)Xμ(ct)Xν+xXμxXν+yXμyXν+zXμzXν g_{\mu\nu} = -\dfrac{\partial{(ct')}}{\partial{X^{\mu}}}\dfrac{\partial{(ct')}}{\partial{X^{\nu}}} + \dfrac{\partial{x'}}{\partial{X^{\mu}}}\dfrac{\partial{x'}}{\partial{X^{\nu}}} + \dfrac{\partial{y'}}{\partial{X^{\mu}}}\dfrac{\partial{y'}}{\partial{X^{\nu}}} + \dfrac{\partial{z'}}{\partial{X^{\mu}}}\dfrac{\partial{z'}}{\partial{X^{\nu}}} これについて,地道に計算していくことを考えます。g00g_{00} について最初に考えます。一般速度に対するLorentz変換は→Lorentz変換を参考にしてください。 (ct)X0=(ct)ct=1c(ct)t=1ct(γ(ct)γVxcxγVycyγVzcz)=γ\begin{aligned} \dfrac{\partial{(ct')}}{\partial{X^{0}}} &= \dfrac{\partial{(ct')}}{\partial{ct}} =\dfrac{1}{c}\dfrac{\partial{(ct')}}{\partial{t}}\\ &= \dfrac{1}{c}\dfrac{\partial{}}{\partial{t}}\left( \gamma (ct) -\gamma\dfrac{V_x}{c} x -\gamma\dfrac{V_y}{c} y -\gamma\dfrac{V_z}{c}z\right)\\ &= \gamma \end{aligned} また, (x)X0=1c(x)t=1ct(γVxc(ct){1+(γ1)Vx2V2}x+(γ1)VxVyV2y+(γ1)VxVzV2z)=γVxc\begin{aligned} \dfrac{\partial{(x')}}{\partial{X^{0}}} &= \dfrac{1}{c}\dfrac{\partial{(x')}}{\partial{t}}\\ &= \dfrac{1}{c}\dfrac{\partial{}}{\partial{t}}\left(-\gamma\dfrac{V_x}{c}(ct)\left\{1+(\gamma-1)\dfrac{V_x^2}{V^2}\right\}x\right. \\ &\quad\quad\quad\quad\quad\left.+ (\gamma-1)\dfrac{V_xV_y}{V^2} y+ (\gamma-1)\dfrac{V_xV_z}{V^2}z\right)\\ &= -\gamma \dfrac{V_x}{c} \end{aligned} 同様にすれば, (y)X0=γVyc, (z)X0=γVzc \dfrac{\partial{(y')}}{\partial{X^{0}}} = -\gamma \dfrac{V_y}{c}, ~\dfrac{\partial{(z')}}{\partial{X^{0}}} = -\gamma \dfrac{V_z}{c} これより, g00=(ct)X0(ct)X0+xX0xX0+yX0yX0+zX0zX0=γ2+γ2(Vx2c2+Vy2c2+Vz2c2)=γ2(1V2c2)=1\begin{aligned} g_{00} &= -\dfrac{\partial{(ct')}}{\partial{X^{0}}}\dfrac{\partial{(ct')}}{\partial{X^{0}}} + \dfrac{\partial{x'}}{\partial{X^{0}}}\dfrac{\partial{x'}}{\partial{X^{0}}} + \dfrac{\partial{y'}}{\partial{X^{0}}}\dfrac{\partial{y'}}{\partial{X^{0}}} + \dfrac{\partial{z'}}{\partial{X^{0}}}\dfrac{\partial{z'}}{\partial{X^{0}}}\\ &= -\gamma^2 + \gamma^2 \left(\dfrac{V_x^2}{c^2}+\dfrac{V_y^2}{c^2}+\dfrac{V_z^2}{c^2}\right)\\ &= -\gamma^2 \left(1-\dfrac{V^2}{c^2}\right)\\ &= -1 \end{aligned}

g11g_{11} について, (ct)X1=(ct)x=x(γ(ct)γVxcxγVycyγVzcz)=γVxc\begin{aligned} \dfrac{\partial{(ct')}}{\partial{X^{1}}} &= \dfrac{\partial{(ct')}}{\partial{x}}\\ &= \dfrac{\partial{}}{\partial{x}}\left( \gamma (ct) -\gamma\dfrac{V_x}{c} x -\gamma\dfrac{V_y}{c} y -\gamma\dfrac{V_z}{c}z\right)\\ &= -\gamma\dfrac{V_x}{c} \end{aligned} また, (x)X1=(x)x=x(γVxc(ct)+{1+(γ1)Vx2V2}x+(γ1)VxVyV2y+(γ1)VxVzV2z)=1+(γ1)Vx2V2\begin{aligned} \dfrac{\partial{(x')}}{\partial{X^{1}}} &= \dfrac{\partial{(x')}}{\partial{x}}\\ &= \dfrac{\partial{}}{\partial{x}}\left(-\gamma\dfrac{V_x}{c}(ct) + \left\{1+(\gamma-1)\dfrac{V_x^2}{V^2}\right\}x \right.\\ &\quad\quad\quad\quad\quad\left.+ (\gamma-1)\dfrac{V_xV_y}{V^2} y+ (\gamma-1)\dfrac{V_xV_z}{V^2}z\right)\\ &= 1+(\gamma-1)\dfrac{V_x^2}{V^2} \end{aligned} 同様にすれば, (y)X1=(γ1)VxVyV2, (z)X1=(γ1)VxVzV2 \dfrac{\partial{(y')}}{\partial{X^{1}}} = (\gamma-1)\dfrac{V_xV_y}{V^2}, ~ \dfrac{\partial{(z')}}{\partial{X^{1}}} = (\gamma-1)\dfrac{V_xV_z}{V^2} これより, g11=(ct)X1(ct)X1+xX1xX1+yX1yX1+zX1zX1=γ2Vx2c2+{1+(γ1)Vx2V2}2+{(γ1)VxVyV2}2+{(γ1)VxVzV2z}2==1\begin{aligned} g_{11} &= -\dfrac{\partial{(ct')}}{\partial{X^{1}}}\dfrac{\partial{(ct')}}{\partial{X^{1}}} + \dfrac{\partial{x'}}{\partial{X^{1}}}\dfrac{\partial{x'}}{\partial{X^{1}}} + \dfrac{\partial{y'}}{\partial{X^{1}}}\dfrac{\partial{y'}}{\partial{X^{1}}} + \dfrac{\partial{z'}}{\partial{X^{1}}}\dfrac{\partial{z'}}{\partial{X^{1}}}\\ &= -\gamma^2\dfrac{V_x^2}{c^2} + \left\{1+(\gamma-1)\dfrac{V_x^2}{V^2}\right\}^2 \\ &\quad\quad\quad\quad\quad+ \left\{(\gamma-1)\dfrac{V_xV_y}{V^2}\right\}^2 + \left\{(\gamma-1)\dfrac{V_xV_z}{V^2}z\right\}^2\\ &= \cdots = 1 \end{aligned} また,g01g_{01} について, g11=(ct)X0(ct)X1+xX0xX1+yX0yX1+zX0zX1=γ(γVxc)+(γVxc){1+(γ1)Vx2V2}+(γVyc)(γ1)VxVyV2+(γVzc)(γ1)VxVzV2==0\begin{aligned} g_{11} &= -\dfrac{\partial{(ct')}}{\partial{X^{0}}}\dfrac{\partial{(ct')}}{\partial{X^{1}}} + \dfrac{\partial{x'}}{\partial{X^{0}}}\dfrac{\partial{x'}}{\partial{X^{1}}} + \dfrac{\partial{y'}}{\partial{X^{0}}}\dfrac{\partial{y'}}{\partial{X^{1}}} + \dfrac{\partial{z'}}{\partial{X^{0}}}\dfrac{\partial{z'}}{\partial{X^{1}}}\\ &= \gamma \cdot \left(-\gamma \dfrac{V_x}{c} \right) + \left(-\gamma \dfrac{V_x}{c} \right) \cdot \left\{1 + (\gamma-1)\dfrac{V_x^2}{V^2}\right\} \\ &\quad \quad + \left(-\gamma \dfrac{V_y}{c} \right)\cdot (\gamma-1)\dfrac{V_xV_y}{V^2} + \left(-\gamma \dfrac{V_z}{c} \right)\cdot (\gamma-1)\dfrac{V_xV_z}{V^2} \\ &= \cdots = 0 \end{aligned} 同様に計算していけば, gμν=ημν g_{\mu\nu} = \eta_{\mu\nu} であることがわかります。特殊相対性理論では,慣性系しか扱わないことから,計量テンソルを ημν\eta_{\mu\nu} と書くことが多いです。

←前の記事 後の記事→