I(m,n)=sin∫sinmxcosnxdx
とおくと
I(m,n)=∫sinmx⋅(cosx)cosn−1xdx=∫(m+11sinm+1x)′cosn−1xdx=m+11sinm+1xcosn−1x−m+1n−1∫sinm+1xcosn−2x(−sinx)dx=m+11sinm+1xcosn−1x+m+1n−1∫sinm+2xcosn−2xdx=m+11sinm+1xcosn−1x+m+1n−1∫sinmx(1−cos2x)cosn−2xdx=m+11sinm+1xcosn−1x+m+1n−1(I(m,n−2)−I(m,n))
よって
⟺ ⟺ ⟺ (m+1)I(m,n)(m+n)I(m,n)I(m,n)=sinm+1xcosn−1x+(n−1)(I(m,n−2)−I(m,n))=sinm+1xcosn−1x+(n−1)I(m,n−2)=m+nsinm+1xcosn−1x+m+nn−1I(m,n−2)
もう片方も同様。