回答受付中

座標平面上に2つの放物線 C1:y=x2C_1: y = x^2C2:y=(xa)2+a2C_2: y = -(x-a)^2 + a^2 がある。ただし、aaa>0a > 0 を満たす実数の定数とする。 C1C_1 上の点 P(x1,y1)P(x_1, y_1)C2C_2 上の点 Q(x2,y2)Q(x_2, y_2) を考える。 PP0x1a0 \le x_1 \le a の範囲を動き、QQax22aa \le x_2 \le 2a の範囲を動くものとする。

線分 PQPQ の中点 MM のとりうる範囲を DD とする。DD を座標平面上に図示せよ。


この問題を逆像法で解きたいのですが、不等式の2乗がでてきて正しい同値変形ができませんでした。どなたか逆像法での模範解答を教えてください。

この質問にはまだ回答がありません。あなたが最初の回答者になろう!
回答する

回答(0件)

この質問にはまだ回答がありません。あなたが最初の回答者になろう!
回答する

関連する質問

もっとみる