数学III

複素数の極形式

z=r(cosθ+isinθ)z = r ( \cos \theta + i \sin \theta)

$$ z = r ( \cos \theta + i \sin \theta) $$

偏角

argz=θ+2πn\arg z = \theta + 2 \pi n

$$ \arg z = \theta + 2 \pi n $$

ドモアブルの定理

(cosθ+isinθ)n=cosnθ+isinnθ(\cos \theta + i \sin \theta)^{n} = \cos n \theta + i \sin n \theta

$$ (\cos \theta + i \sin \theta)^{n} = \cos n \theta + i \sin n \theta $$

1のn乗根

wk=cos(2πn×k)+isin(2πn×k)w_k = \cos \left( \dfrac{2 \pi}{n} \times k \right) + i \sin \left( \dfrac{2 \pi}{n} \times k \right)

$$ w_k = \cos \left( \dfrac{2 \pi}{n} \times k \right) + i \sin \left( \dfrac{2 \pi}{n} \times k \right) $$

楕円

x2a2+y2b2=1\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1

$$ \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 $$

双曲線

x2a2y2b2=1\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1

$$ \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 $$

サイクロイド

{x=a(θsinθ)y=a(1cosθ)\begin{cases} x = a(\theta - \sin \theta) \\ y = a(1 - \cos \theta) \end{cases}

$$ \begin{cases} x = a(\theta - \sin \theta) \\ y = a(1 - \cos \theta) \end{cases} $$

無限数列の極限値

limnan=α\lim_{n \to \infty} a_n = \alpha

$$ \lim_{n \to \infty} a_n = \alpha $$

無限等比数列の極限

limnrn={+ (r>1)1 (r=1)0 (r<1)振動 (r1)\lim_{n \to \infty} r^n = \begin{cases} + \infty \ (r > 1) \\ 1 \ (r = 1) \\ 0 \ (|r| < 1) \\ \text{振動} \ (r \leqq 1) \end{cases}

$$ \lim_{n \to \infty} r^n = \begin{cases} + \infty \ (r > 1) \\ 1 \ (r = 1) \\ 0 \ (|r| < 1) \\ \text{振動} \ (r \leqq 1) \end{cases} $$

収束する無限級数の和

S=limnSn=n=1anS = \lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n

$$ S = \lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n $$

発散

limxaf(x)=+\lim_{x \to a} f(x) = + \infty

$$ \lim_{x \to a} f(x) = + \infty $$

片側極限

limxa0f(x)=limxa+0f(x)=α\lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = \alpha

$$ \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = \alpha $$

ネイピア数

e=limt0(1+t)1te = \lim_{t \to 0} (1 + t)^{\frac{1}{t}}

$$ e = \lim_{t \to 0} (1 + t)^{\frac{1}{t}} $$

積分

tanθ dθ=sinθcosθdθ=logcosθ+C\int \tan \theta \ d \theta = \int \dfrac{\sin \theta}{\cos \theta} \, d \theta = -\log |\cos \theta| + C

$$ \int \tan \theta \ d \theta = \int \dfrac{\sin \theta}{\cos \theta} \, d \theta = -\log |\cos \theta| + C $$

置換積分

f(x) dx=f(g(t))g(t) dt\int f(x) \ dx = \int f(g(t)) g'(t) \ dt

$$ \int f(x) \ dx = \int f(g(t)) g'(t) \ dt $$

区分求積法

01f(x) dx=limn1nk=0n1f(kn)\int_{0}^{1} f(x) \ dx = \lim_{n \to \infty} \dfrac{1}{n} \sum_{k=0}^{n-1} f \left (\dfrac{k}{n} \right)

$$ \int_{0}^{1} f(x) \ dx = \lim_{n \to \infty} \dfrac{1}{n} \sum_{k=0}^{n-1} f \left (\dfrac{k}{n} \right) $$

回転体の体積

V=πab{f(x)}2 dxV = \pi \int_{a}^{b} \{ f(x) \}^2 \ dx

$$ V = \pi \int_{a}^{b} \{ f(x) \}^2 \ dx $$

曲線の長さ

L=ab1+{f(x)}2 dxL = \int_{a}^{b} \sqrt{1 + \{ f'(x) \}^2} \ dx

$$ L = \int_{a}^{b} \sqrt{1 + \{ f'(x) \}^2} \ dx $$