数学II
二項定理
$$
(a+b)^n =
{}_n\mathrm{C}_0 a^n +
{}_n\mathrm{C}_1 a^{n-1}b +
{}_n\mathrm{C}_2 a^{n-2}b^2 +
\cdots +
{}_n\mathrm{C}_{n-1} ab^{n-1} +
{}_n\mathrm{C}_n b^n
$$
虚数単位
$$
i = \sqrt{-1}
$$
複素数
$$
\alpha = a + bi
$$
共役複素数
$$
\overline{\alpha} = a - bi
$$
$$
\overline{\overline{\alpha}} = \alpha
$$
$$
\alpha + \overline{\alpha} = 2a
$$
$$
\alpha \overline{\alpha} = a^2 + b^2
$$
N乗根
$$
x^3 = a \iff x = \sqrt[3]{a}
$$
$$
x^n = a \iff x = \sqrt[n]{a}
$$
点と直線の距離
$$
d = \dfrac{| ax_1 + by_1 + c |}{\sqrt{a^2 + b^2}}
$$
円
$$
(x - a)^2 + (y - b)^2 = r^2
$$
円の接線の方程式
$$
x_1 x + y_1 y = r^2
$$
加法定理
$$
\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta
$$
$$
\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \cos \beta
$$
$$
\tan(\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}
$$
2倍角の公式
$$
\sin2 \alpha = 2 \sin \alpha \cos \alpha
$$
$$
\begin{aligned}
\cos2 \alpha &= \cos^2 \alpha - \sin^2 \alpha \\
&= 2 \cos^2 \alpha - 1 \\
&= 1 - 2 \sin^2 \alpha
\end{aligned}
$$
$$
\tan2 \alpha = \dfrac{2 \tan \alpha}{1 - \tan^2 \alpha}
$$
半角の公式
$$
\sin^2 \dfrac{\alpha}{2} = \dfrac{1 - \cos \alpha}{2}
$$
$$
\cos^2 \dfrac{\alpha}{2} = \dfrac{1 + \cos \alpha}{2}
$$
$$
\tan^2 \dfrac{\alpha}{2} = \dfrac{1 - \cos \alpha}{1 + \cos \alpha}
$$
3倍角の公式
$$
\sin3 \alpha = 3 \sin \alpha - 4 \sin^3 \alpha
$$
$$
\cos3 \alpha = -3 \cos \alpha + 4 \cos^3 \alpha
$$
三角関数の合成
$$
a \sin \theta + b \cos \theta = \sqrt{a^2+b^2} \sin(\theta + \alpha)
$$
対数
$$
\log_a M = p \iff M = a^p
$$
対数の性質
$$
\log_a 1 = 0
$$
$$
\log_a a = 1
$$
$$
\log_a MN = \log_a M + \log_a N
$$
$$
\log_a \dfrac{M}{N} = \log_a M - \log_a N
$$
$$
\log_a M^r = r \log_a M
$$
底の変換公式
$$
\log_a b = \dfrac{\log_c b}{\log_c a}
$$
導関数
$$
f'(x) = \lim_{\varDelta x \to 0} \dfrac{ f(x+\varDelta x) - f(x) }{\varDelta x}
$$
接線の方程式
$$
y - f(a) = f'(a)(x - a)
$$
増減表
$$
\begin{array}{c|ccccc}
x & \cdots & -a & \cdots & a & \cdots \\
\hline
f'(x) & + & 0 & - & 0 & + \\
\hline
f(x) & \nearrow & 2a^3 & \searrow & -2a^3 & \nearrow
\end{array}
$$
不定積分
$$
\int f(x) \ dx = F(x) + C
$$
定積分
$$
\int_{a}^{b} f(x) \ dx = \left[ F(x) \right]^{b}_{a} = F(b) - F(a)
$$
微分と積分の関係
$$
\begin{aligned}
& \dfrac{d}{dx} \int_{a}^{x} f(t) \ dt \\
&= \dfrac{d}{dx} \left[ F(t) \right]^{x}_{a} \\
&= \dfrac{d}{dx} \{ F(x) - F(a) \} \\
&= F'(x)
\end{aligned}
$$