数学II

二項定理

(a+b)n=nC0an+nC1an1b+nC2an2b2++nCn1abn1+nCnbn(a+b)^n = {}_n\mathrm{C}_0 a^n + {}_n\mathrm{C}_1 a^{n-1}b + {}_n\mathrm{C}_2 a^{n-2}b^2 + \cdots + {}_n\mathrm{C}_{n-1} ab^{n-1} + {}_n\mathrm{C}_n b^n

$$ (a+b)^n = {}_n\mathrm{C}_0 a^n + {}_n\mathrm{C}_1 a^{n-1}b + {}_n\mathrm{C}_2 a^{n-2}b^2 + \cdots + {}_n\mathrm{C}_{n-1} ab^{n-1} + {}_n\mathrm{C}_n b^n $$

虚数単位

i=1i = \sqrt{-1}

$$ i = \sqrt{-1} $$

複素数

α=a+bi\alpha = a + bi

$$ \alpha = a + bi $$

共役複素数

α=abi\overline{\alpha} = a - bi

$$ \overline{\alpha} = a - bi $$

α=α\overline{\overline{\alpha}} = \alpha

$$ \overline{\overline{\alpha}} = \alpha $$

α+α=2a\alpha + \overline{\alpha} = 2a

$$ \alpha + \overline{\alpha} = 2a $$

αα=a2+b2\alpha \overline{\alpha} = a^2 + b^2

$$ \alpha \overline{\alpha} = a^2 + b^2 $$

N乗根

x3=a    x=a3x^3 = a \iff x = \sqrt[3]{a}

$$ x^3 = a \iff x = \sqrt[3]{a} $$

xn=a    x=anx^n = a \iff x = \sqrt[n]{a}

$$ x^n = a \iff x = \sqrt[n]{a} $$

点と直線の距離

d=ax1+by1+ca2+b2d = \dfrac{| ax_1 + by_1 + c |}{\sqrt{a^2 + b^2}}

$$ d = \dfrac{| ax_1 + by_1 + c |}{\sqrt{a^2 + b^2}} $$

(xa)2+(yb)2=r2(x - a)^2 + (y - b)^2 = r^2

$$ (x - a)^2 + (y - b)^2 = r^2 $$

円の接線の方程式

x1x+y1y=r2x_1 x + y_1 y = r^2

$$ x_1 x + y_1 y = r^2 $$

加法定理

sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta

$$ \sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta $$

cos(α±β)=cosαcosβsinαcosβ\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \cos \beta

$$ \cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \cos \beta $$

tan(α±β)=tanα±tanβ1tanαtanβ\tan(\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}

$$ \tan(\alpha \pm \beta) = \dfrac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} $$

2倍角の公式

sin2α=2sinαcosα\sin2 \alpha = 2 \sin \alpha \cos \alpha

$$ \sin2 \alpha = 2 \sin \alpha \cos \alpha $$

cos2α=cos2αsin2α=2cos2α1=12sin2α\begin{aligned} \cos2 \alpha &= \cos^2 \alpha - \sin^2 \alpha \\ &= 2 \cos^2 \alpha - 1 \\ &= 1 - 2 \sin^2 \alpha \end{aligned}

$$ \begin{aligned} \cos2 \alpha &= \cos^2 \alpha - \sin^2 \alpha \\ &= 2 \cos^2 \alpha - 1 \\ &= 1 - 2 \sin^2 \alpha \end{aligned} $$

tan2α=2tanα1tan2α\tan2 \alpha = \dfrac{2 \tan \alpha}{1 - \tan^2 \alpha}

$$ \tan2 \alpha = \dfrac{2 \tan \alpha}{1 - \tan^2 \alpha} $$

半角の公式

sin2α2=1cosα2\sin^2 \dfrac{\alpha}{2} = \dfrac{1 - \cos \alpha}{2}

$$ \sin^2 \dfrac{\alpha}{2} = \dfrac{1 - \cos \alpha}{2} $$

cos2α2=1+cosα2\cos^2 \dfrac{\alpha}{2} = \dfrac{1 + \cos \alpha}{2}

$$ \cos^2 \dfrac{\alpha}{2} = \dfrac{1 + \cos \alpha}{2} $$

tan2α2=1cosα1+cosα\tan^2 \dfrac{\alpha}{2} = \dfrac{1 - \cos \alpha}{1 + \cos \alpha}

$$ \tan^2 \dfrac{\alpha}{2} = \dfrac{1 - \cos \alpha}{1 + \cos \alpha} $$

3倍角の公式

sin3α=3sinα4sin3α\sin3 \alpha = 3 \sin \alpha - 4 \sin^3 \alpha

$$ \sin3 \alpha = 3 \sin \alpha - 4 \sin^3 \alpha $$

cos3α=3cosα+4cos3α\cos3 \alpha = -3 \cos \alpha + 4 \cos^3 \alpha

$$ \cos3 \alpha = -3 \cos \alpha + 4 \cos^3 \alpha $$

三角関数の合成

asinθ+bcosθ=a2+b2sin(θ+α)a \sin \theta + b \cos \theta = \sqrt{a^2+b^2} \sin(\theta + \alpha)

$$ a \sin \theta + b \cos \theta = \sqrt{a^2+b^2} \sin(\theta + \alpha) $$

対数

logaM=p    M=ap\log_a M = p \iff M = a^p

$$ \log_a M = p \iff M = a^p $$

対数の性質

loga1=0\log_a 1 = 0

$$ \log_a 1 = 0 $$

logaa=1\log_a a = 1

$$ \log_a a = 1 $$

logaMN=logaM+logaN\log_a MN = \log_a M + \log_a N

$$ \log_a MN = \log_a M + \log_a N $$

logaMN=logaMlogaN\log_a \dfrac{M}{N} = \log_a M - \log_a N

$$ \log_a \dfrac{M}{N} = \log_a M - \log_a N $$

logaMr=rlogaM\log_a M^r = r \log_a M

$$ \log_a M^r = r \log_a M $$

底の変換公式

logab=logcblogca\log_a b = \dfrac{\log_c b}{\log_c a}

$$ \log_a b = \dfrac{\log_c b}{\log_c a} $$

導関数

f(x)=limΔx0f(x+Δx)f(x)Δxf'(x) = \lim_{\varDelta x \to 0} \dfrac{ f(x+\varDelta x) - f(x) }{\varDelta x}

$$ f'(x) = \lim_{\varDelta x \to 0} \dfrac{ f(x+\varDelta x) - f(x) }{\varDelta x} $$

接線の方程式

yf(a)=f(a)(xa)y - f(a) = f'(a)(x - a)

$$ y - f(a) = f'(a)(x - a) $$

増減表

xaaf(x)+00+f(x)2a32a3\begin{array}{c|ccccc} x & \cdots & -a & \cdots & a & \cdots \\ \hline f'(x) & + & 0 & - & 0 & + \\ \hline f(x) & \nearrow & 2a^3 & \searrow & -2a^3 & \nearrow \end{array}

$$ \begin{array}{c|ccccc} x & \cdots & -a & \cdots & a & \cdots \\ \hline f'(x) & + & 0 & - & 0 & + \\ \hline f(x) & \nearrow & 2a^3 & \searrow & -2a^3 & \nearrow \end{array} $$

不定積分

f(x) dx=F(x)+C\int f(x) \ dx = F(x) + C

$$ \int f(x) \ dx = F(x) + C $$

定積分

abf(x) dx=[F(x)]ab=F(b)F(a)\int_{a}^{b} f(x) \ dx = \left[ F(x) \right]^{b}_{a} = F(b) - F(a)

$$ \int_{a}^{b} f(x) \ dx = \left[ F(x) \right]^{b}_{a} = F(b) - F(a) $$

微分と積分の関係

ddxaxf(t) dt=ddx[F(t)]ax=ddx{F(x)F(a)}=F(x)\begin{aligned} & \dfrac{d}{dx} \int_{a}^{x} f(t) \ dt \\ &= \dfrac{d}{dx} \left[ F(t) \right]^{x}_{a} \\ &= \dfrac{d}{dx} \{ F(x) - F(a) \} \\ &= F'(x) \end{aligned}

$$ \begin{aligned} & \dfrac{d}{dx} \int_{a}^{x} f(t) \ dt \\ &= \dfrac{d}{dx} \left[ F(t) \right]^{x}_{a} \\ &= \dfrac{d}{dx} \{ F(x) - F(a) \} \\ &= F'(x) \end{aligned} $$