数学I

指数法則

am×an=am+na^m \times a^n = a^{m+n}

$$ a^m \times a^n = a^{m+n} $$

(am)n=amn(a^m)^n = a^{mn}

$$ (a^m)^n = a^{mn} $$

(ab)n=anbn(ab)^n = a^{n}b^{n}

$$ (ab)^n = a^{n}b^{n} $$

展開公式

(a+b)(a2ab+b2)=a3+b3(a + b)(a^2 - ab + b^2) = a^3 + b^3

$$ (a + b)(a^2 - ab + b^2) = a^3 + b^3 $$

(ab)(a2+ab+b2)=a3b3(a - b)(a^2 + ab + b^2) = a^3 - b^3

$$ (a - b)(a^2 + ab + b^2) = a^3 - b^3 $$

循環小数

0.5˙6˙=0.565656560.\dot{5}\dot{6} = 0.56565656 \ldots

$$ 0.\dot{5}\dot{6} = 0.56565656 \ldots $$

0.21˙=0.211111110.2\dot{1} = 0.21111111\ldots

$$ 0.2\dot{1} = 0.21111111\ldots $$

0.4˙56˙=0.4564564560.\dot{4}5\dot{6} = 0.456456456\ldots

$$ 0.\dot{4}5\dot{6} = 0.456456456\ldots $$

有理化

ba=b×aa×a=baa\dfrac{b}{\sqrt{a}} = \dfrac{b \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} \\ = \dfrac{b \sqrt{a}}{a}

$$ \dfrac{b}{\sqrt{a}} = \dfrac{b \times \sqrt{a}}{\sqrt{a} \times \sqrt{a}} \\ = \dfrac{b \sqrt{a}}{a} $$

根号

(a+b)+2ab=a+b\sqrt{(a+b) + 2\sqrt{ab}} = \sqrt{a} + \sqrt{b}

$$ \sqrt{(a+b) + 2\sqrt{ab}} = \sqrt{a} + \sqrt{b} $$

(a+b)2ab=ab\sqrt{(a+b) - 2\sqrt{ab}} = \sqrt{a} - \sqrt{b}

$$ \sqrt{(a+b) - 2\sqrt{ab}} = \sqrt{a} - \sqrt{b} $$

一次不等式

x=a    x=±a|x| = a \iff x = \pm a

$$ |x| = a \iff x = \pm a $$

x<a    a<x<a|x| < a \iff -a < x < a

$$ |x| < a \iff -a < x < a $$

x>a    x<a,x>a|x| > a \iff x < -a, x > a

$$ |x| > a \iff x < -a, x > a $$

平方完成

y=ax2+bx+c=a(x+b2a)2b24ac4ay = ax^2 + bx + c = a \left( x + \dfrac{b}{2a} \right)^2 - \dfrac{b^2 - 4ac}{4a}

$$ y = ax^2 + bx + c = a \left( x + \dfrac{b}{2a} \right)^2 - \dfrac{b^2 - 4ac}{4a} $$

判別式

D2=b24acD^2 = b^2 - 4ac

$$ D^2 = b^2 - 4ac $$

{D>0    異なる2つの実数解を持つD=0    実数解を1つもつ(重解)D<0    実数解を持たない(異なる2つの虚数解を持つ)\begin{cases} D>0 \iff \text{異なる2つの実数解を持つ} \\ D=0 \iff \text{実数解を1つもつ(重解)} \\ D<0 \iff \text{実数解を持たない(異なる2つの虚数解を持つ)} \end{cases}

$$ \begin{cases} D>0 \iff \text{異なる2つの実数解を持つ} \\ D=0 \iff \text{実数解を1つもつ(重解)} \\ D<0 \iff \text{実数解を持たない(異なる2つの虚数解を持つ)} \end{cases} $$

三角比の変換公式

tanθ=sinθcosθ\tan \theta = \dfrac{\sin \theta}{\cos \theta}

$$ \tan \theta = \dfrac{\sin \theta}{\cos \theta} $$

sin2θ+cos2θ=1\sin^{2} \theta + \cos^{2} \theta = 1

$$ \sin^{2} \theta + \cos^{2} \theta = 1 $$

1+tan2θ=1cos2θ1 + \tan^{2} \theta = \dfrac{1}{\cos^{2} \theta}

$$ 1 + \tan^{2} \theta = \dfrac{1}{\cos^{2} \theta} $$

正弦定理

asinA=bsinB=csinC=2R\dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R

$$ \dfrac{a}{\sin A} = \dfrac{b}{\sin B} = \dfrac{c}{\sin C} = 2R $$

余弦定理

a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A

$$ a^2 = b^2 + c^2 - 2bc \cos A $$

b2=c2+a22cacosBb^2 = c^2 + a^2 - 2ca \cos B

$$ b^2 = c^2 + a^2 - 2ca \cos B $$

c2=a2+b22abcosCc^2 = a^2 + b^2 - 2ab \cos C

$$ c^2 = a^2 + b^2 - 2ab \cos C $$

三角形の面積

S=12absinθS = \dfrac{1}{2} ab \sin \theta

$$ S = \dfrac{1}{2} ab \sin \theta $$

集合の演算子

aA,Aaa \in A, A \ni a

$$ a \in A, A \ni a $$

aAa \notin A

$$ a \notin A $$

AB,BAA \subset B, B \supset A

$$ A \subset B, B \supset A $$

A⊄BA \not \subset B

$$ A \not \subset B $$

ABA \cap B

$$ A \cap B $$

ABA \cup B

$$ A \cup B $$

\emptyset

$$ \emptyset $$

A\overline{A}

$$ \overline{A} $$

ドモルガンの法則

AB=AB\overline{A \cup B} = \overline{A} \cap \overline{B}

$$ \overline{A \cup B} = \overline{A} \cap \overline{B} $$

AB=AB\overline{A \cap B} = \overline{A} \cup \overline{B}

$$ \overline{A \cap B} = \overline{A} \cup \overline{B} $$

和集合の要素の数

n(AB)=n(A)+n(B)n(ABC)n(A \cup B) = n(A) + n(B) - n(A \cap B \cap C)

$$ n(A \cup B) = n(A) + n(B) - n(A \cap B \cap C) $$

n(A)=n(U)n(A)n(\overline{A}) = n(U) - n(A)

$$ n(\overline{A}) = n(U) - n(A) $$

n(ABC)=n(A)+n(B)+n(C)n(AB)n(BC)n(CA)+n(ABC)\begin{aligned} n(A \cup B \cup C) &= n(A) + n(B) + n(C) \\ &- n(A \cap B) -n(B \cap C) - n(C \cap A) \\ &+ n(A \cap B \cap C) \end{aligned}

$$ \begin{aligned} n(A \cup B \cup C) &= n(A) + n(B) + n(C) \\ &- n(A \cap B) -n(B \cap C) - n(C \cap A) \\ &+ n(A \cap B \cap C) \end{aligned} $$

命題

ABA \Rightarrow B

$$ A \Rightarrow B $$

ABA \Leftarrow B

$$ A \Leftarrow B $$

A    BA \iff B

$$ A \iff B $$

平均値

xˉ=k=1nxkn=x1+x2+x3++xnn\begin{aligned} \bar{x} &= \dfrac{\sum_{k=1}^{n} x_k}{n} \\ &= \dfrac{x_1 + x_2 + x_3 + \cdots + x_n}{n} \end{aligned}

$$ \begin{aligned} \bar{x} &= \dfrac{\sum_{k=1}^{n} x_k}{n} \\ &= \dfrac{x_1 + x_2 + x_3 + \cdots + x_n}{n} \end{aligned} $$

中央値

x~={xn+12(nが奇数のとき)xn2+xn2+12(nが偶数のとき)\tilde{x} = \begin{cases} x_\frac{n+1}{2} \quad \text{(nが奇数のとき)} \\ \dfrac{x_\frac{n}{2} + x_{\frac{n}{2}+1}}{2} \quad \text{(nが偶数のとき)} \end{cases}

$$ \tilde{x} = \begin{cases} x_\frac{n+1}{2} \quad \text{(nが奇数のとき)} \\ \dfrac{x_\frac{n}{2} + x_{\frac{n}{2}+1}}{2} \quad \text{(nが偶数のとき)} \end{cases} $$

偏差

xkxˉx_k-\bar{x}

$$ x_k-\bar{x} $$

分散

S2=1nk=1n(xkxˉ)2S^2 = \dfrac{1}{n} \sum_{k=1}^{n} (x_k - \bar{x})^{2}

$$ S^2 = \dfrac{1}{n} \sum_{k=1}^{n} (x_k - \bar{x})^{2} $$

共分散

Sxy=1nk=1n(xkxˉ)(ykyˉ)S_{xy} = \dfrac{1}{n} \sum_{k=1}^n (x_k - \bar{x})(y_k - \bar{y})

$$ S_{xy} = \dfrac{1}{n} \sum_{k=1}^n (x_k - \bar{x})(y_k - \bar{y}) $$