数C放物線の基本事項です。準線 l ⊥ PHとなっているのはなぜですか?線分FHの二等分線上の点はすべて放物線の条件を満たしていると思います
ので、直角でなくても成り立つのではないかと思いました。
ベストアンサー
回答が間違って居たらすみません…何かおかしいところがあれば、是非ご指摘下さい。
mikanpowerさんは恐らく十分条件必要条件に就いて勘違いして居るのではないかと思います。確かに線分の二等分線上の点は全てを満たしますが、そもそもの放物線の定義が、写真の解説欄にもある通り、「或る定点からの距離とその定点を通らない定直線からの距離が等しい」ですよね。点と定直線の距離と言うのは、点から定直線に垂線を下ろし、その交点と点を結ぶ線分の長さのことを言いますよね。ここで垂直が登場しますね。(数Ⅱで点と直線の距離の公式を導いた時に或る点から直線上に垂線を下ろしましたよね。それと同じ感覚です。)そして、、、なので、放物線の定義よりとなり、放物線の標準形が導かれます。この式はそもそも垂直であることを用いて導出した式なのです。
何かあれば是非返信下さい。